General Remark on Transistor Sizing

The (main) purpose of a MOST is to make gain, hence, large g_m and small g_{ds} .

$$I_{DS} pprox K rac{W}{L} V_{dsat}^2$$
 , hence, $V_{dsat} pprox \sqrt{rac{I_{DS}}{W}} rac{1}{\sqrt{K}} \sqrt{L}$

- choose "reasonable" current density I_{DS}/W
- adjust V_{dsat} with $L \to V_{dsat}$ and V_{ds} sets g_{ds}
- adjust g_m with I_{DS}/W
- Current density I_{DS}/W design procedure

(with V_{dsat} fixed, also $\omega_T = \mu V_{dsat}/L^2$ is fixed , and $I_{DS}/g_m = V_{dsat}/2$ fixed)

BTW:
$$\frac{2}{V_{dsat}} = \frac{g_m}{I_{DS}}$$

Similar for subthreshold, but $I_{DS}=I_{D0}\frac{W}{L}e^{V_{GS}/(nV_t)}\left(1-e^{-V_{DS}/V_t}\right)$, hence, choose $V_{DS}>4V_t\approx 100mV$ and $g_m\approx I_{DS}/(nV_t)$ (choose $V_{DS}>100mV$ to set g_{ds} , and adjust g_m with I_{DS})